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Whnt signaling is a well conserved pathway critical for growth, patterning and differentiation of multiple
tissues and organs. Previous studies on Wnt signaling in the pancreas have been based predominantly on
downstream pathway effector genes such as p-catenin. We here provide evidence that the canonical-
pathway member Wnt7b is a physiological regulator of pancreatic progenitor cell growth. Genetic
deletion of Wnt7b in the developing pancreas leads to pancreatic hypoplasia due to reduced proliferation
of pancreatic progenitor cells during the phase of pancreas development marked by rapid progenitor cell
growth. While the differentiation potential of pancreatic progenitor cells is unaffected by Wnt7b
deletion, through a gain-of-function analysis, we find that early pancreatic progenitor cells are highly
sensitive to Wnt7b expression, but later lose such competence. By modulating the level and the temporal
windows of Wnt7b expression we demonstrate a significant impact on organ growth and morphogen-
esis particularly during the early branching stages of the organ, which negatively affects generation of
the pro-endocrine (Ngn3*/Nkx6.1"), and pro-acinar (Ptf1A*) fields. Consequently, Wnt7b gain-of-
function results in failed morphogenesis and almost complete abrogation of the differentiation of
endocrine and acinar cells, leading to cystic epithelial metaplasia expressing ductal markers including
Sox9, Hnf6 and Hnf1p. While Wnt7b is expressed exclusively in the developing pancreatic epithelium,
adjacent mesenchymal cells in the organ display a direct trophic response to elevated Wnt7b and
increase expression of Lefl, cFos and desmin. Of note, in contrast to the pancreatic epithelium, the
pancreatic mesenchyme remains competent to respond to Wnt7b ligand, at later stages in development.
We conclude that Wnt7b helps coordinate pancreatic development through autocrine, as well as
paracrine mechanisms, and as such represents a novel bi-modal morphogen ligand.

© 2015 Published by Elsevier Inc.

Introduction

reciprocal signaling from epithelium-to-mesenchyme is less well
understood.

Tissue interactions between mesodermal cells and adjacent endo-
dermal epithelial cells occur in development, homeostasis, and also
during metaplastic growth of internal organs. During development,
instructive inputs from paraxial gut-associated mesenchyme aid in
endodermal organ formation and budding. During adult homeosta-
sis and under regenerative processes, such relationships are often
referred to as niche/progenitor signaling. In pancreatic cancer, recruit-
ment of adjacent stromal tissues aids in growth and metaplastic
maintenance of the tumor (Apte et al., 2013; Erkan et al., 2012; Feig
et al.,, 2012; Hamada et al., 2013). For the most part, mesenchymal-to-
epithelial signaling in the pancreas is mainly considered whereas the

* Corresponding authors.
E-mail addresses: afeliks@ccf.org (S. Afelik), jensenj2@ccf.org (J. Jensen).

http://dx.doi.org/10.1016/j.ydbio.2014.12.031
0012-1606/© 2015 Published by Elsevier Inc.

In the case of pancreas, organ formation occurs when dorsal and
ventral evaginations of the posterior foregut endoderm occur into in a
dense layer of mesenchyme, creating nascent pancreatic buds. By
embryonic day 115 these pancreatic epithelia initiates extensive
branching morphogenesis whereby the initially stratified epithelium
gradually transforms into a single-layered epithelium which grows
and branches extensively into the mesenchymal cap. Epithelial growth
outpaces the mesenchyme with an ensuing decrease in mesenchymal/
epithelial ratio as development progresses. The importance of the
mesenchyme for the growth of the embryonic pancreatic epithelium
was first demonstrated in explants-type studies in which isolated
pancreatic epithelium, stripped of the mesenchymal layer, underwent
growth arrest, failure in exocrine cell differentiation, concomitant with
accelerated differentiation of early-type glucagon-expressing endo-
crine cells. These effects could be rescued through recombination with
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mesenchyme of both pancreatic and non-pancreatic types (Golosow
and Grobstein, 1962; Wessells and Cohen, 1967). Recent studies in
which genetic tools were employed to achieve a more thorough and
specific ablation of the mesenchyme in vivo revealed that the
pancreatic mesenchyme is important for the growth of all pancreatic
cell lineages (Landsman et al., 2011). Furthermore, genetic studies in
the mouse have shown that Fgf10 emanating from the early pancreatic
mesenchyme is required for the proliferation of the pancreatic
epithelium (Bhushan et al., 2001; Hart et al., 2003; Miralles et al.,
1998; Norgaard et al., 2003).

While the evidence for Fgfl0 in mesenchymal-to-epithelial
signaling is compelling, the level of Fgf10 expression dwindles to
barely detectable levels by E13.5 in mice (Bhushan et al., 2001;
Elghazi et al., 2002). This raises the possibility that Fgf10 might be
important for the initial phase of pancreatic progenitor growth but
not during the later growth phase of multipotent progenitors, in the
period leading up to the secondary transition at which terminal
differentiation initiates. In support of this notion, mouse pancreatic
explant studies involving pharmacological inhibition of Fgfr signaling
revealed that while Fgf signaling is required for the initial growth it is
dispensable for later growth of epithelial explants (Greggio et al.,
2013). Alternatively, during late stages of pancreas development,
Fgf10 might operate in concert with other signaling pathways to
promote pancreatic progenitor growth. Of note, recent studies have
revealed the importance of canonical Wnt signaling in sustaining
pancreatic progenitor using hydrogel-based, colony-forming assays
(Greggio et al., 2013; Huch et al, 2013; Jin et al,, 2013; Sugiyama
et al, 2013).

Studies implicating a role of the Wnt pathway in pancreas deve-
lopment have largely been based on genetic perturbation of Wnt
pathway components, rather than specific ligands. These studies
reveal a cell-intrinsic requirement of the pathway in proliferation of
epithelial progenitors. Pancreas-specific deletion of p-catenin leads to
severely reduced pancreatic size and defects in acinar cell differentia-
tion (Baumgartner et al., 2014; Dessimoz et al., 2005; Murtaugh et al.,
2005; Wells et al.,, 2007). Conversely, overexpression of f-catenin in
pancreas promote pancreatic epithelial growth (Heiser et al., 2006).
Pancreatic overexpression of a dominant-negative Frizzled-8 receptor
consisting of the Wnt ligand binding domain (Frz8CRD) results in
reduced levels of unphosphorylated -catenin in the pancreas and a
drastically reduced size (Papadopoulou and Edlund, 2005). Deletion of
Pygopus2, encoding a component of the p-catenin transcriptional
complex, also leads to decreased pancreatic progenitor cell prolifera-
tion (Jonckheere et al., 2008). Of note, the importance of canonical
Wnt signaling for pancreatic progenitor growth is not restricted to -
the epithelial compartment, as deletion of p-catenin specifically in
the pancreatic mesenchyme also leads to reduced pancreatic size
(Landsman et al., 2011).

The identity and source of the Wnt ligand responsible for acti-
vating the canonical Wnt pathway in either compartment have
remained elusive. Here, we show that Wnt7b is exclusively expressed
within the epithelial compartment and exerts effects on pancreatic
epithelia and mesenchyme that is consistent with this ligand being
responsible for the compartmental activation of canonical Wnt
signaling. The expression of Wnt7b corresponds to the period when
mesenchymal Fgf10 expression levels decrease. Pancreatic deletion of
Wnit7b is sufficient to cause pancreatic hypoplasia to a degree similar
to that observed in some cell intrinsic Wnt-pathway mutants in the
developing pancreas (Jonckheere et al., 2008; Landsman et al., 2011).
Interestingly, pancreatic gain-of-expression of Wnt7b results in
abrogation of most cell differentiation; substantial expansion of
pancreatic-associated mesenchyme; with an ensuing epithelial meta-
plasia resembling pre-cancerous lesions represented by polycystic
ductal networks. These studies provide a basis for understanding
Wnt7b-mediated organ growth, and uncover a novel epithelial-to-
mesenchymal signaling pathway.

Materials and methods
Animals

The full length human Wnt7b cDNA clone was purchased from
OriGene Technologies, Inc. This was cloned downstream of the
tetracycline responsive promoter, in a modified version of the pTRE2
vector which contains an IRES-nEGFP cassette downstream of the
multiple-cloning site. Doxycycline inducible expression of the con-
struct was first validated by co-transfecting it with pCMV-rtTA into
HEK293 cell. Nuclear EGFP expression was detected in the presence of
doxycycline. A linearized fragment of the pTRE2-Wnt7b-IRES-nEGFP
fragment was injected into fertilized one-cell embryos at the Case
Western Reserve University transgenic and gene targeting facility. Out
of a total of 30 animals recovered from injected embryos, 9 transgene
positive founders (FO) were identified through PCR based genotyping,
using DNA extracted from ear notches and primers specific for the
transgene. Five of the founders transmitted the transgene, and follo-
wing mating to Pdx1-tTAX! we identified 3 independent lines which
showed pancreas specific EGFP expression with a phenotype that is
consistent among all 3 independent lines. To shut off transgene
expression in Pdx1-tTAN; pTRE2-Wnt7b-IRES-nEGFP double trans-
genic embryos, doxycycline was injected intraperitoneally into preg-
nant females at a dose of 0.05 pg/g of body weight.

Wnt7b conditional null mice with loxP sites flanking exon3 of
the Wnt7b gene were mated to Pdx1-Cre mice to induce pancreas
specific Wnt7b null embryos. The creation of this mouse strain is
previously described (Rajagopal et al., 2008). Generation of the
Pdx1-Cre deleter mouse has been previously described (Gu et al.,
2002). To determine Pdx1-Cre recombinase activity, Pdx1-Cre
mice were mated to Rosa26™"/™C lineage tracer (Jackson Labora-
tory, stock number: 007576).

Immunofluorescence staining and microscopy

Immunofluorescence staining and analysis were performed as
previously described (Norgaard et al, 2003) on n>3 samples at all
times points. Fresh tissue was dissected in cold 1X PBS and fixed in 4%
paraformaldehyde (PFA) at 4 °C for 4 h or overnight. Fixed samples were
frozen in OCT and 6 pm thick sections were prepared for histology.
Tissue sections were washed in 1X PBS, blocked in 0.5% blocking
reagent (PerkinElmer, Boston, MA) for 1 h and incubated with primary
antibody overnight at room temperature. The following primary anti-
bodies and dilutions were used: rabbit anti-amylase (1:100, Sigma:
A82273); guinea pig anti-insulin (1:500, Dako: A0564); rabbit anti-
somatostatin (1:500, Dako: A0566); mouse anti-glucagon (1:500,
Sigma: G2654); Dolichos Biflorus Agglutinin (DBA) (1:100, Vector
laboratories: FL-1031); rabbit anti-Sox9 (1:2000, Millipore: AB5535);
goat anti-Pdx1 (1:2000, CV Wright, Nashville, TN, USA); mouse anti-
Ngn3 (1:200, University of lowa hybridoma bank: F25A1B3-c); mouse
anti-Nkx6.1 (1:200, University of lowa hybridoma bank: F64A6B4-c);
rabbit anti-pHH3 (1:200, Upstate: 06-570); rabbit anti-Hnf1p (1:100,
Santa Cruz: sc-22840); rabbit anti-Hnf6 (1:50, Santa Cruz: sc-13050);
rabbit anti-PDGRRp (1:100, Santa Cruz: sc-432); mouse anti-desmin
(1:100, Santa Cruz; sc-271677); rabbit anti-p-catenin (1:100, NeoMar-
kers: RB-090-P1); rabbit anti-Ptf1a (1:2000, CV Wright, Nashville, TN,
USA); mouse anti-acetylated tubulin (1:500, Sigma: T7451); rabbit anti-
Active Caspase-3 (1:250, Promega: G748A); rabbit anti-scribbled (1:100,
Santa Cruz: sc-28737); rabbit anti-cFos (1:100, Santa Cruz: sc-253);
mouse anti-smooth muscle actin (1:100, Dako: 1A4); rabbit anti-Lef1
(1:100, Cell Signaling: #2230), with TSA™ signal amplification, TSA™
Tetramethylrhodamine System (PerkinElmer, Inc: NEL702001KT). Sec-
ondary antibodies were applied for 1 h at room temperature at 1:100
dilution (pre-absorbed secondary antibodies coupled to DyLight488,
DyLight 594 or DyLight 649, Jackson Immunoresearch, West Grove, PA).
For TSA™ signal amplification of Lefl, following primary antibody
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incubation, slides were incubated with biotinylated anti-rabbit antibody
(undiluted, ZYMED: Cat#:95-6143B) for 30 min, washed and incubated
with HRP-streptavidin (undiluted, ZYMED: Cat#:95-6543B) for 15 min.
Slides were incubated with tetramethylrhodamine tyramide reagent
(1:100, PerkinElmer, Inc: FP1014) for 15 min for signal development.
Following stainings, slides were washed 3 x 5" in 1X PBS and mounted
in glycerol mount (20% glycerol in PBS). Images were acquired using
IMAGEpro 4.1-7.0.

RNA in situ hybridization

Whole mount in situ hybridization was performed as previously
described (Little et al., 2007) using DIG-labeled anti-sense Wnt7b
mRNA probes. For signal generation, samples were incubated in
NBT/BCIP overnight at 4 °C.

Morphometry, cell counting and assessment of organ size

For quantitative assessment of organ size pancreata from various
genotypes, wild type littermates were isolated from E18.5 and E14.5
and weighed on a scale. To determine organ size at embryonic
stages below E14.5 or analyze the relative proportion of various cell
types, entire pancreatic tissue was sectioned and every fifth section
was immunostained with the appropriate marker genes. The area of
stained cells was then quantified with ImagePro Software (Media
Cybermetics, Bethesda, MD). For quantification of relative prolifera-
tion rate the number of pHH3 (phosphorylated histone H3) positive
nuclei per unit area was measured.

Results

Wnit7b is exclusively expressed by epithelial progenitors during
pancreas development

Analysis of the expression of the Wnt-family members in the
mid-gestational pancreas previously identified Wnt11, Wnt2b,
Wnt4, Wnt5a and Wnt7b [(Heller et al., 2002), and data not
shown]. Following transgenic overexpression of several of these
Wnt ligands (Wnt1, Wnt2, Wnt4, Wnt5a, Wnt6 and Wnt7a), only
Wnt1 and Wnt5a were shown to cause pancreatic hypoplasia.
Using whole-mount in situ hybridization, we detected abundant
Wnt7b transcripts in both dorsal and ventral pancreatic buds at
E11.5 (Fig. 1A and E). It was previously suggested that Wnt7b is
expressed in the pancreatic mesenchyme; (Heller et al., 2002),
however using more improved staining techniques we have
discovered that Wnt7b mRNA expression is limited to the pan-
creatic epithelium and absent from the pancreatic mesenchyme at
all stages analyzed (E11.5-E15.5) (Fig. 1A-G’). Wnt7b expression
remained restricted to the pancreatic epithelium as branching
morphogenesis of the pancreatic epithelium becomes pronounced
from E12.5 onwards (Fig. 1B, D, F, G, and G’). By E15.5 Wnt7b
expression declined (Fig. 1D). The epithelial-restricted expression
is consistent with a previous report of Wnt7b expression in the
E13.5 pancreatic epithelium (Papadopoulou and Edlund, 2005).
While low levels of Wnt7b transcripts are detectable within the
definitive endoderm (Supplementary Fig. 1A), the highest levels of
Wnt7b expression within the endoderm are restricted to the lung
and pancreatic epithelium (Supplementary Fig. 1B).

Wnt7b is required for pancreatic organ growth prior to terminal cell
differentiation

To define the role of Wnt7b during pancreas development, we
utilized conditional Wnt7b mutant animals (Wnt7b"") (Rajagopal
et al., 2008). These mice allow for deletion of exon3 in the

presence of Cre-recombinase, making it possible to generate tissue
specific loss of Wnt7b function in the homozygous state. The Pdx1-
Cre recombinase expressing mouse line (Supplementary Fig. 2)
was crossbred to Wnt7b mutant mice to achieve pancreas-specific
Wnt7b null embryos, hereafter referred to as Wnt7b PKO. Gross
morphological examination of the distal foregut/midgut region of
E18.5 embryos revealed a hypoplastic pancreas in Wnt7b PKO
embryos (Fig. 2A). Quantitative assessment by weight shows no
significant difference in body weight between WT, heterozygotes
or Wnt7b PKO embryos (Fig. 2B) whereas the weight of E18.5
Wnt7b PKO pancreatic tissue is 57% that of wild type littermates
(Fig. 2C). The ratio of pancreas to body weight also reveals a
substantial reduction in pancreatic mass of Wnt7b PKO embryos
relative to WT (Fig. 2D). Because the diminished pancreatic size
could be due to late-gestational proliferative defects or cell death,
we evaluated E14.5 Wnt7b PKO, heterozygotes and WT littermates.
Similar to E18.5, these embryos were identical in size and weight,
but the Wnt7b PKO pancreas was 42% of the wild type pancreatic
weight (Supplementary Fig. 3).

The early impact on pancreatic growth could be explained by lack
of formation of specific cell types where absence of such would cause
a hypoplastic organ. We performed immunofluorescence staining to
assess the composition of the major cell types in the pancreas by
using antibodies directed to amylase for the acinar cell compartment,
insulin, glucagon and somatostatin for the various cell types of the
endocrine compartment and used the lectin DBA which specifically
stains pancreatic ducts (Fig. 2E-H). Morphometric quantification
revealed a similar proportion of the various cell types between Wnt7b
PKO and WT pancreata at E18.5 (Fig. 2I-]). We next questioned if the
reduced organ size could be accredited to a delay, or accelerated cell
differentiation. Histological analysis of pancreatic tissue from E10.5 to
E14.5 embryos with the differentiation markers indicated above
showed that the onset and levels of expression of these markers
were comparable between WT and Wnt7b PKO embryos, suggesting
that the reduced pancreatic size in Wnt7b PKO embryos is not due to
premature cell differentiation (data not shown).

Wnit7b is not a determinant of progenitor cell patterning

To further examine any potential effect of Wnt7b on the pan-
creatic progenitor cell state, we focused our analysis on pancreatic
progenitor patterning. Prior to terminal cell fate differentiation,
multipotent pancreatic progenitor cells (MPCs) become patterned
into pro-acinar (TipPC) and pro-endocrine/duct compartments
(TrPC) which are localized to the tip and trunk of the branched
epithelium, respectively (Afelik et al., 2012; Schaffer et al., 2010;
Zhou et al., 2007). The pancreatic progenitor markers Ptfla, Nkx6.1
and Sox9 are initially expressed in all MPCs, but Ptfla expression
becomes restricted to the TipPC whereas the expression of Nkx6.1
and Sox9 becomes confined to the TrPC compartment. Histological
analysis of Wnt7b PKO epithelium at E13.5 revealed no changes in
the expression pattern and the relative proportion of the TrPC
markers Nkx6.1 and Sox9 in Wnt7b PKO pancreatic epithelial cells
(Fig. 3A-F). Likewise, a normal speckled pattern of Ngn3 expression
was observed within the TrPC compartment (Fig. 3G, and H). The
percentage of Ngn3-expressing epithelial cells in the Wnt7b PKO
pancreas was comparable to WT (Fig. 31). The unaltered expression
and distribution of the lineage committing transcription factors are
consistent with the normal differentiation pattern of endocrine and
acinar cell fates observed at E18.5.

Wnt7b is required for pancreatic progenitor cell proliferation
The ultimate size of the pancreas is directly proportional to the

mass of multipotent pancreatic progenitor cells present at the onset
of pancreas development (Stanger et al., 2007). This prompted us to
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Fig. 1. Expression profile of Wnt7b during pancreas development. (A-D)Whole mount in situ hybridization analysis of the expression pattern of Wnt7b at the indicated
developmental stages. (E-H) Sections of whole mount in situ hybridization at E11.5 (E), E12.5 (F) and E13.5 (G, G’) depicting epithelial restricted expression of Wnt7b. High
magnification of the boxed area in (G) is shown in (G’). Sto: stomach; dp: dorsal pancreas; vp: ventral pancreas; duo: duodenum; li: liver. Scale bar: 100 pm.

assess pancreatic progenitor cell mass in WT and Wnt7b PKO
embryos over a range of developmental stages beginning at organ
specification. By morphometry, we detected no difference in Pdx1+
pancreatic progenitor cell numbers between WT and Wnt7b PKO
embryos at E9.5 and E10.5, and the overall bud size was compar-
able. We concluded that pancreatic fate specification occurred
normally in Wnt7b PKO embryos (data not shown). At E11.5, we
noted a reduction in pancreatic progenitor mass of Wnt7b PKO
embryos, though not statistically significant (Fig. 4A-C). We then
focused our analysis at E13.5 which marks the onset of the
secondary transition stage of pancreas development. We noted a
more pronounced reduction in pancreatic progenitor cell mass at
E13.5 compared to that observed at E11.5 (Fig. 4E-G). A possible
explanation for the hypoplasia in Wnt7b null pancreas could be
apoptosis. However, TUNEL assay performed at various develop-
mental stages showed no difference in apoptosis between WT and
Wnt7b PKO pancreas, this being essentially non-existent in both
conditions (data not shown). We analyzed cell proliferation rate at
E11.5 and E13.5 using antibodies against the M-phase marker
phospho-histone H3 (pHH3). A significant reduction in the prolif-
eration rate of pancreatic progenitor cells was observed at both
E11.5 (Fig. 4A, B, and D) and E13.5 (Fig. 4E, F, and H). Based on the
above observations we conclude that Wnt7b is required for proper
organ size determination by controlling pancreatic progenitor cell
proliferation prior to, and up to the secondary transition.

Elevated expression of Wnt7b results in formation of polycystic duct-
like structures

We and others have previously shown that Fgf10 plays an important
role in pancreatic progenitor cell expansion (Bhushan et al., 2001), and

Fgf10 is able to maintain cells in a progenitor state when overexpressed
(Hart et al,, 2003; Norgaard et al,, 2003). Given the requirement of
Wnt7b in pancreatic progenitor cell proliferation, we set out to test if
elevation of Wnt7b would maintain the progenitor cell state and/or
cause hyperproliferation. The full-length coding sequence of human
Whnt7b (which has 99%, 345/349, protein sequence identity to mouse
Wnt7b) was inserted downstream of a tetracycline inducible promoter
(PTRE) followed by an IRES-nEGFP sequence to aid tracking of Wnt7b-
expressing cells. The construct was injected into fertilized oocytes to
generate transgenic founders which were subsequently mated to Pdx1-
tTA knock in (Pdx1-tTAX) mice (Holland et al, 2005) to allow
expression of the transgene in the developing pancreas, duodenum
and antral stomach, in the absence of doxycycline. Expression of the
transgene was easily visualized by EGFP expression (Fig. 5A and B). We
identified three founder strains displaying EGFP expression in the
developing pancreas and duodenum, and all generated comparable
phenotypes. pTRE2-Wnt7b-IRES-nEGFP/Pdx1-tTAX' double transgenic
mice (“DTG”) developed an enlarged antral stomach and a dorsal
pancreatic bud that appears enlarged and cystic (Fig. 5A and B). Single-
transgenic embryos for either pTRE2-Wnt7b-IRES-nEGFP or Pdx1-tTAX!
displayed no EGFP expression and had no apparent pancreatic
abnormalities at all embryonic stages examined. In the WT pancreas
expression of Hnf1p, Sox9 and Hnf6 become restricted to ductal cells by
E16.5 (Fig. 5C, and E). Histological analysis at E16.5 and E18.5 revealed
that Wnt7b DTG pancreata consisted predominantly of polycystic duct-
like complexes that stained positive for Hnf1p, Sox9, Hnf6 and the
duct-specific lectin DBA (Fig. 5C-], data not shown). Compared to the
distended WT pancreatic ducts, the duct-like structures of the Wnt7b
DTG pancreas were extremely dilated (Fig. 5D, F, H, and ]). In contrast to
the abundant duct-like structures, a very few amylase® acinar cells
were detected in the Wnt7b DTG pancreas (Fig. 5]). When observed,
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Fig. 2. Wnt7b mutant mice develop a hypoplastic pancreas. (A) Morphological view of mdigut from wild type (WT) and pancreas specific Wnt7b knock out (Wnt7b PKO)
embryos at E18.5. (B-D) Quantification by weight of: (B) embryonic pancreatic tissue; (C) ratio of pancreatic weight to whole body weight of WT, heterozygous and; (D)
Wnt7b knock out embryos at E18.5. (E-F) Immunofluorescence staining of amylase (Amy), insulin (Ins) and duct specific lectin (DBA) in WT (E) and Wnt7b knock out embryos
(F) at E18.5. (G-H) Immunofluorescence staining of insulin, glucagon and somatostatin in WT (G) and knock out (H) embryos at E18.5. (I-]) Morphometric quantification of
amylase and DBA (I) and insulin, glucagon and somatostatin (J). Graphs values are mean + s.d.; n.s: not significant; ***p < 0.001. Scale bar: 50 pm.

such were located at the periphery of the duct-like metaplastic
structures (Fig. 5]). Endocrine cell fate development was likewise
severely attenuated in the Wnt7b DTG pancreas (Fig. 51, and ]), which
included all endocrine sub-types (data not shown).

To gain further insight into the effect of Wnt7b-overexpression on
the embryonic pancreas, we performed genomics-based expression
profiling (Illumina mRef.) comparing Wnt7b overexpressing pancreas
to WT littermates (n=3/condition, at E14.5). A false discovery rate-
limited (FDR <0.1) gene list was compiled, extracting genes that
were >2 fold increased/decreased in the Wnt7b-overexpressing
pancreas. Principal component analysis validated the conditions and
samples to be individually grouped. This analysis validated the global
reduction in expression of genes associated with terminal endocrine
fates, revealing a typical reduction to 10-30% of WT expression of
genes including Ins1, Ins2, Gcg, Sst, Abcc8, and Chga (Supplementary
Fig. 4A). Similarly, a general reduction to 20-40% of WT expression of
acinar-specific genes (e.g. Amy2, Ctrb1, Elal, Ela2, Ptfla, Rbpjl, bHLHb8
(Mist1)) and others was also observed (Supplementary Fig. 4B).

Wnt7b overexpression suppresses both endocrine and acinar
progenitor fate assignment

To characterize the observed effects of pancreatic Wnt7b over-
expression in more detail, we addressed the expression of markers
of various pancreatic progenitor cell populations. At E13.5 the
pancreatic progenitor marker Pdx1 is expressed broadly in all
pancreatic epithelial cells, outlining the structural organization of

the pancreatic epithelium (Fig. 6A, D, G, and J; Zhou et al.,, 2007). In
the Wnt7b DTG pancreas, Pdx1 was expressed comparatively to
WT; however, the pancreatic epithelium failed to undergo branch-
ing morphogenesis with lack of well-defined tips (Fig. 6B, E, H, and
K). Accordingly, Ptf1a, which is normally restricted to the distal tips
(TipPC) in WT (Fig. 6D) (Cockell et al., 1989; Hald et al., 2008; Krapp
et al., 1996) was reduced in the Wnt7b DTG pancreas (Fig. 6E, and F).
The loss of TipPCs was accompanied by a loss of TrPCs, as the TrPC
transcription factor Nkx6.1 was almost abolished in Wnt7b DTGs
(Fig. 6A-C). Within the TrPC field, all pancreatic endocrine cells are
derived from Neurogenin3 (Ngn3) positive progenitor cells
(Gradwohl et al., 2000; Gu et al., 2002). At both E12.5 and E13.5
Ngn3 expression was almost abrogated in the Wnt7b DTG pancreas
(Fig. 6G-I and data not shown). We conclude that lack of formation
of endocrine and acinar precursor cells is the reason for the blunted
differentiation of the more terminal state (Fig. 5G, and H).

The above findings suggested that Wnt7b overexpression sup-
pressed the formation of both endocrine and acinar lineages with
progenitor cells assuming a duct-like phenotype, but when this
occurred remained unclear. We therefore examined earlier develop-
mental stages. At E12.5 both WT and DTG pancreata display minimal
but comparable levels of DBA staining arguing against premature
ductal cell formation (data not shown). However, corresponding to
the formation of terminally differentiated ductal cells at E13.5,
luminal DBA reactivity was detectable within the WT pancreatic
epithelium (Fig. 6]). In contrast, DBA™ epithelial cells were far more
abundant in Wnt7b DTG epithelium (Fig. 6K and L) and DBA reactivity
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Fig. 3. Patterning of the embryonic pancreas is unaffected by Wnt7b mutation. (A, B) Immunofluorescence staining of Pdx1 and Sox9 in WT (A) and Wnt7b knock out pancreas (B).
(C) Morphometric quantification of the percentage of Pdx1 epithelial cells that express Sox9. (D, E) Immunofluorescence staining of Pdx1 and Nkx6.1 in WT (D) and Wnt7b PKO
pancreas (E). Morphometric analysis of the percentage of Pdx1 cells that express Nk6.1 in the WT and Wnt7 PKO pancreas (F). (G, H) Immunofluorescence staining of Pdx1 and
Ngn3 in WT (G) and Wnt7b PKO pancreas (H). Morphometric analysis of the percentage of Pdx1 cells that express Nkx6.1 in the WT and Wnt7b PKO pancreas (I). Scale bar: 50 pm.

was present on the apical and baso-lateral surfaces of the Wnt7b DTG
pancreatic epithelium (Fig. 6K). These observations suggest that at
time of ductal cell formation (E12.5-E13.5) elevation of Wnt7b directs
pancreatic progenitor cells almost exclusively into the ductal lineage
at the expense of other lineages.

Lack of primary cilia has been shown to cause cyst formation in the
pancreas (Cano et al, 2006). Given that the Wnt7b DTG pancreas
develops polycystic duct-like structures, we examined the state of
primary cilia through immunostaining for acetylated tubulin. Com-
pared to the WT pancreas where primary cilia line the luminal side of
the epithelial cords (Supplementary Fig. 5A, A’, C, and C’), we notice a
dramatic loss of primary cilia within the cystic duct-like structures of
the Wnt7b DTG pancreas ( Supplementary Fig. 5B, B’, D, and D’). Loss of
primary cilia has been associated with deregulated signaling leading to
defective pancreas development. Of note, in the absence of primary
cilia the pancreatic epithelium is susceptible to hedgehog signal
hyperactivation leading to polycystic ductal structures similar to that
observed in the Wnt7b-overexpressing pancreas (Cervantes et al.,
2010). Consistent with this, microarray analysis indicated an increased
expression of the hedgehog target gene Gli2 in the Wnt7b DTG
pancreas (Supplementary Table 1).

Overexpression of Wnt7b at the onset of pancreas development
disrupts pancreatic morphogenesis and differentiation

We reasoned that the effect of Wnt7b overexpression on the
pancreas may either be due to the continuous persistent expression

of the transgene, or that this may arise from a specific develop-
mental time point during which the pancreatic epithelium is
sensitive to Wnt7b protein levels. To clarify this we limited expres-
sion of the transgene to a brief time window, between the onset of
Pdx1 promoter activation (~E8.0) till E11.5 (Wnt7b DTG Brief ON). In
the presence of doxycycline, the transactivating protein tTA fails to
bind and activates transcription from the pTRE promoter leading to
loss of transgene expression. We switched off expression of the
transgene by administering doxycline to pregnant females starting
from E11.5 until E16.5, at which point embryonic pancreatic tissue
was analyzed (Fig. 7A). Transgenic expression of EGFP was lost in
Wnt7b DTG embryos, indicating inactivation of transgene expres-
sion. Remarkably, transient Wnt7b overexpressing pancreas was
similar to that observed when Wnt7b was expressed continuously
(Fig. 7B, and C; Fig. 51, and ]). Wnt7b DTG Brief ON pancreata
displayed epithelial dysmorphogenesis, maintained expression of
the ductal marker DBA, and failed to express terminal differentia-
tion markers including insulin (Fig. 7B, and C). We next limited the
activation of the transgene from the onset of pancreas development
until E10.5, and also until E9.5 (Fig. 7A). Surprisingly, these very
brief exposures to exogenous Wnt7b were sufficient to induce
pancreatic epithelial dysmorphogenesis similar to continuous trans-
gene activation starting from the onset of pancreas development
(Fig. 7D, and E). However, by limiting expression to the window of
E8.0-E9.5, endocrine cell differentiation as marked by the expres-
sion of insulin and glucagon was rescued (Fig. 7F, and G, and data
not shown), yet, epithelial dysplasia was still observed. These
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Fig. 4. Wnt7b deletion leads to decreased proliferation rate of pancreatic progenitor cells. (A-D) Wnt7b deletion results in reduced proliferation rate of pancreatic cells at
E11.5 but not a significant reduction in epithelial mass. (A,B) Immunofluorescence staining of Pdx1 and phospho-histone H3 in WT (A) and Wnt7b PKO pancreas (B) at E11.5.
(C) Morphometric quantification of pancreatic mass between WT and Wnt7b PKO embryonic pancreas at E11.5. (D) Morphometrical quantification of the proliferation rate of
WT and Wnt7b PKO pancreas at E11.5. (E, F) Immunofluorescence staining of Pdx1, desmin and phospho-histone H3 in E13.5 WT (E) and Wnt7b PKO (F). (G) Morphometric
quantification of pancreatic mass in WT and Wnt7b PKO. (H) Morphometric quantification of the proliferative rate of WT and Wnt7b PKO pancreas at E13.5. Graphs values are

mean + s.d.; n.s.: not statistically significant; *p < 0.05; ** p < 0.01. Scale bar: 50 pm.

observations suggest that the epithelial dysmorphogenesis resulting
from Wnt7b overexpression emanates from the early pancreatic
progenitor stage, prior to the onset of branching morphogenesis.

Overexpression of Wnt7b during the secondary transition stage
of pancreas development induces a disproportionate increase in
mesenchyme, but decrease in acinar mass

The outcome of the Wnt7b DTG Brief ON experiment suggests
that the early pancreas is highly sensitive to Wnt7b expression
levels. Also, as endogenous Wnt7b promotes pancreatic progenitor
cell proliferation starting from E11.5 (Fig. 4A-D), we reasoned that
delayed activation of the Wnt7b transgene, starting from E11.5
(Fig. 8A), would: (i) circumvent the deleterious effect of exogenous
Wnt7b in the early pancreatic epithelium, and (ii) lead to increased
organ size. Contrary to our prediction, delayed Wnt7b overexpres-
sion (Wnt7b DTG Delayed ON) resulted in a smaller pancreatic mass
than that of WT (Fig. 8B-D). Though smaller, immunofluorescence
analysis revealed that the Wnt7b DTG Delayed ON pancreas contains
terminally differentiated cells of endocrine, acinar and ductal
lineages (Fig. 8E, and F). Morphometric analysis revealed a decrease
in the percentage of acinar cells relative to total pancreatic mass,
while insulin and duct cells remain comparable to that of WT
(Fig. 8I). Contrary to acinar cell mass, we observed a two-fold
increase in pancreatic mesenchyme relative to total pancreatic
mass, in the Wnt7b DTG Delayed ON (Fig. 8G-I). This suggests that
the effect of Wnt7b is not limited to the epithelium, but involves
effects in the pancreatic mesenchyme.

Epithelially-expressed Wnt7b induces mesodermal gene expression
and the expansion of a specific pancreatic mesodermal subset of cells

The increased mesenchymal mass in the Wnt7b DTG Delayed ON
pancreas prompted us to investigate the effect of continuous Wnt7b
overexpression on the mesenchyme. Because pancreatic mesench-
yme is the source of various growth and differentiation inducing
factors, the impact of Wnt7b originating from the epithelium and

sensed by the mesenchyme could plausibly be modifying the
mesenchymal signaling and reciprocally impact the epithelial com-
partment. Immunofluorescence analysis with antibodies to various
mesenchymal marker genes revealed an increased mesenchymal
mass in the Wnt7b DTG pancreas (Supplementary Fig. 6A-D). In
addition to increased expression of desmin (Supplementary Fig. 6A,
and B), we detected a dramatic increase in the expression of cFos in
the Wnt7b DTG mesenchyme (Supplementary Fig. 6C, and D). cFos is
a MAPK target and a component of the AP-1 complex commonly
linked to proliferation. Thus, cFos may play a role in the increased
mass of the mesenchyme. Interestingly, we did not detect any
significant difference in the pancreatic mesenchymal mass or pro-
liferation rate in Wnt7bKO embryos (Supplementary Fig. 6 E-G).
This suggests that the increased mesenchymal mass in the Wnt7b
DTG is the result of hyperactivation of Wnt signaling.

Analysis of the genomic profile of the Wnt7b DTG pancreas at
E14.5 revealed increased expression of several mesodermal-cell
specific genes which encode extracellular matrix proteins (e.g. Col6A1,
Col16A1, Col1A2, Dcn, Lox, Lum, Fhll, and FbIn1) (Supp. Table 1). These
genes represented a generalized 2-3 fold increased expression
compared to WT. The increased expression of a larger mesodermal
subset of genes correlates well with the relative increase in abun-
dance of pancreatic mesenchymal mass. Because the genomics
analysis does not provide information of compartment-specific gene
expression, we sought to stratify the Wnt7b-induced genes by
comparing to available data sets in which epithelial and mesenchymal
separation was performed. Expression data based on microdissected
E10.5 pancreatic mesenchyme and epithelium was available on the
Affymetrix MGU133 platform and we compared such to the upregu-
lated list. We found approx. 80% of the Wnt7b upregulated genes to
be highly enriched in pancreatic mesenchyme, and a much smaller
subset enriched in pancreatic epithelium (Supplementary Table 2).
Similarly, when using an available dataset based on isolated intestinal
epithelium and mesenchyme, we also noted a strong enrichment of
Wnt7b-upregulated genes in the mesenchymal, rather than epithelial
tissue of the intestine (Supplementary Table 2). Ingenuity™-based
pathway analysis provided more information on the Wnt7b
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Fig. 5. Overexpression of Wnt7b leads to the development of polycystic duct-like structures. (A) Mid-gut including stomach, duodenum and pancreas of pTRE2-Wnt7b-IRES-
nEGFP; Pdx1-tTAX! double transgenic (DTG) pancreas and WT pancreas in bright field. (B) Fluorescence view of DTG and WT mid-gut. The presence of nEGFP depicts the
expression of the transgene in Wnt7b DTG pancreas. Inset in panel B shows mosaic expression of the transgene (EGFP) within the pancreatic epithelium (stained red for
Pdx1). (C, D) Immunofluorescence staining of Hnf1p in WT (C) and Wnt7b DTG pancreas (D); Sox9, DBA and Dapi in WT (E) and DTG (F); Pdx1 and Hnf6 in WT (G) and Wnt7b
DTG (H); amylase, DBA and insulin in WT (I) and Wnt7b DTG (J). Scale bar: 50 pm.

upregulated transcript pool, helping to identify larger network of and Wifl (Supplementary Table 1, Supplementary Fig. 7), possibly
multiple ECM associated genes, proteases and inhibitors involved in representing feedback inhibition. Interestingly, several genes encod-

ECM remodeling, lysyl oxidases and netrins (Supplementary Fig. 7). ing growth factors were increased in response to elevated Wnt7b,
Several Wnt-pathway inhibitors were increased, including Dkk3, including Fgf7, InhbA (encoding Activin A), and Bmp4 (Supplementary
Sostdc1, Table 1). These results suggest that Wnt7b elicits dramatic changes to
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Fig. 6. Wnt7b overexpression leads to suppression in both tip and trunk progenitor gene expression. (A, B) Immunofluorescence staining of Pdx1, Nkx6.1 and p-catenin in
WT (A) and Wnt7b DTG (B) pancreas. (C) Morphometric quantification of the percentage of Pdx1™ cells that express Nkx6.1. (D, E) Immunofluorescence staining of Pdx1 and
Ptfla in WT (D) and Wnt7b DTG pancreas (E). (F) Morphometric quantification of the percentage of Pdx1™* cell that express Ptfla. (G, H) Immunofluorescence staining of
Pdx1 and Ngn3 in WT (G) and Wnt7b DTG pancreas (H). (I) Morphometric quantification of the percentage of Pdx1™" cells that express Ngn3. Immunofluorescence staining of
the expression of Pdx1 and DBA in WT and Wnt7b DTG pancreas. (L) Morphometric quantification of the area of DBA normalized to Pdx1™ cells. Graphs values are mean + s.

d. *p <0.01; ***p <0.001. Scale bar: 50 pm.

the pancreatic signaling environment, and creates a compound
phenotype that manifests in both germ layer components.

Analysis of the microarray data of the Wnt7b DTG pancreas
indicated upregulated expression of several canonical Wnt target
genes such as Axin2, Pitx2, Apcddl, and Ednra [Supplementary
Table 1, (Zirn et al, 2006)]. This suggests that Wnt7b operates
through canonical Wnt signaling and prompted us to conduct
histological analysis to define which cells are directly responsive to
Wnt7b. The canonical Wnt target gene Lef1 is present predominantly
in the pancreatic epithelium at E10.5 and becomes expressed in both
the epithelium and mesenchyme by E13.5 (Supplementary Fig. 8).
We detect a strong upregulated expression of Lef1 specifically within
the pancreatic mesenchyme in the Wnt7b DTG pancreas. Interest-
ingly, this is also accompanied by reduced Lef1 expression within the
epithelial compartment (Fig. 9A-F). Conversely in the Wnt7b PKO

pancreas, Lefl expression is lost in the mesenchyme and reduced
within the pancreatic epithelium (Fig. 9G-L). Taken together, this
evidence suggests that Wnt7b operates via canonical Wnt signaling
to both the pancreatic epithelium and mesenchyme during pancreas
development.

Discussion

A number of studies have implicated the canonical Wnt signal-
ing pathway as critical for pancreatic progenitor cell growth. But, as
these studies have been based predominantly on genetic perturba-
tions of down-stream Wnt effector genes such as p-catenin, the
identity of the Wnt ligand(s) responsible for Wnt pathway activa-
tion and the tissue of origin have not been determined until now. In
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Fig. 7. Early overexpression of Wnt7b disrupts epithelial morphogenesis and differentiation. (A) Schematic of time points of doxycycline administration to shut off transgene
expression. (B, C) Insulin and DBA immunostaining in WT and Wnt7b DTG at E16.5 following doxycycline administration to pregnant females between E11.5 and E16.5. (D, E)
Expression of insulin and DBA in WT (D) and Wnt7b DTG pancreas (E) at E16.5 from pregnant females given doxyclycline from E10.5 to E16.5. (F, G) Insulin and DBA
expression in E16.5 WT (F) and Wnt7b DTG pancreas derived from pregnant females which were provided doxycycline at E9.5 till E16.5. Scale bar: 50 pm.

this study we have identified Wnt7b as a critical canonical Wnt
ligand expressed in the epithelium and required for pancreatic
progenitor cell growth. We find that pancreas-specific deletion of
Wnt7b leads to reduced proliferation of pancreatic progenitor cells
just prior to and during the secondary transition stage of pancreas
development, with a concomitant pancreatic hypoplasia. Interest-
ingly, however, overexpression of Wnt7b under the Pdx1 promoter
does not lead to increased pancreatic progenitor mass, as would be
expected from the loss-of-function studies; instead this results in
suppression of endocrine and acinar fate differentiation accompa-
nied by polycystic duct-like epithelial complexes and increased
pancreatic mesenchymal mass.

Wht signaling in pancreatic progenitor cell growth

Multiple Wnt ligands have been reported in the pancreas (Heller
et al., 2003). Yet their individual roles in pancreas development have
not been defined. Broad spectrum suppression of Wnt signaling at
the receptor level through overexpression of a diffusible dominant-

negative frizzled 8 receptor fragment (FrzZ8CRD) leads to reduced
pancreatic mass (Papadopoulou and Edlund, 2005). Also targeted
deletion of Wntless in the pancreatic epithelium leading to defective
secretion of Wnt ligands from the pancreatic epithelium results in
reduced pancreatic progenitor growth (Carpenter et al,, 2010). These
reports, together with the observation that targeted deletion of
Wnt7b leads to a significant reduction in pancreatic progenitor
mass, suggest that Wnt7b is a major canonical Wnt ligand for
pancreatic progenitor cell growth. Studies involving targeted dele-
tion of downstream canonical Wnt signaling effectors such as
B-catenin or pygopus2 (Baumgartner et al., 2014; Jonckheere et al.,
2008; Murtaugh et al,, 2005; Wells et al., 2007) have also yielded
reduced pancreatic mass, supporting a role for canonical Wnt
signaling in pancreatic progenitor growth. However, epithelial speci-
fic p-catenin deletion also leads to defects in acinar fate differentia-
tion (Baumgartner et al., 2014; Murtaugh et al., 2005; Wells et al.,
2007). We do not observe defects in acinar cell differentiation
following pancreas specific deletion of Wnt7b. This raises the
possibility that the acinar defects in the B-catenin deficient pancreas

Please cite this article as: Afelik, S., et al, Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-
mesenchymal signaling in pancreatic development. Dev. Biol. (2015), http://dx.doi.org/10.1016/j.ydbio.2014.12.031

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


http://dx.doi.org/10.1016/j.ydbio.2014.12.031
http://dx.doi.org/10.1016/j.ydbio.2014.12.031
http://dx.doi.org/10.1016/j.ydbio.2014.12.031

O OO UL DA WN =

S. Afelik et al. / Developmental Biology m (NEEN) NERE-EEE 11

2 N
AN Sk g

Pdx1-TAT X TetOFF
— e

Dox Administered from E7.5 to E9.5 (OFF-ON)

TN DOX DOX

I WT E18.5

- ‘ Des/Ecad/Dapi ” Ins/Amy/DBA

D *

0-8 80
z < 60
20 o
s ®© 40
> et
g 2
So2 S 20
c <
s X
a.

0 0
WT DTG

WT DTG‘WT DTG WT DTG WT DTG

‘ Amy ‘ Ins ‘ DBA | Desmin

Fig. 8. Overexpression of Wnt7b during mid-pancreas development leads to decreased total pancreatic mass but a disproportionate increase in the mesenchyme.
(A) Schematic of doxycycline administration to suppress Wnt7b expression at the onset of pancreas development (Wnt7b Delayed ON). (B) Bright field view of WT and Wnt7h
Delayed ON mid-gut including pancreas at E18.5. (C) Fluorescent image of panel B depicting expression of the transgene via nEGFP in the Wnt7b Delayed ON DTG pancreas.
(D) Ratio of pancreas to body weight in WT and Wnt7b Delayed ON DTG at E18.5. Immunofluorescence staining of WT and Wnt7b Delayed ON DTG for insulin, amylase and
DBA (E, F); desmin, E-cadherin, and nuclear dapi (G, H). (I) Morphometrical quantification of the percentage of amylase, insulin, DBA and desmin positive cells relative to total
pancreatic area in WT and Wnt7b Delayed ON DTG. Graphs values are mean =+ s.d.; n.s: not significant; *p < 0.05. Scale bar: 50 um.

might be due to functions of g-catenin that are independent of Wnt
signaling, such as a role of p-catenin as part of cell adhesion complex
(Dessimoz et al., 2005).

Window of competence for canonical Wnt signaling in progenitor
growth

Based on the outcome of the Wnt7b deletion studies, we tested
the extent to which pancreatic mass can be increased through
overexpression of exogenous Wnt7b in the pancreatic epithelium,
under the control of the Pdx1-promoter. Rather than inducing
hyperproliferation, the overexpression of Wnt7b in the pancreas led
to pancreatic epithelial dysmorphogenesis, in which both endocrine
and acinar fates were suppressed. By temporally restricting the
exogenous Wnt7b overexpression to only brief developmental time
widows, we established that the observed pancreatic epithelial
dysplasia results from the early overexpression of Wnt7b (~E8.5 to
E11.5), and not due to the continuous Wnt7b hyperactivation, which
mainly affects mesenchymal cells in the organ. This suggests that the
early pancreatic endoderm is sensitive to canonical Wnt signaling
levels, while the pancreatic mesenchyme remains Wnt-responsive
later. Pancreatic epithelial-restricted overexpression of p-catenin
yields similar defects in the pancreatic epithelium, when the onset
of B-catenin expression is at the early stages of pancreas development

(Heiser et al., 2006). Although Wnt signaling is required for the early
induction of definitive endoderm (Mfopou et al., 2014), canonical Wnt
signaling activity patterns the early endoderm towards posterior fates,
at the expense of foregut endodermal fates such as the pancreas
(McLin et al., 2007; Rodriguez-Seguel et al., 2013). Our analysis of the
early pancreas suggests that early onset of Wnt7b expression inhibits
the patterning of multi-potent pancreatic progenitor cells into “tip”
and “trunk” domains and thus abrogates subsequent differentiation
into acinar and endocrine lineages.

Surprisingly, delaying the onset of Wnt7b overexpression to
E11.5 leads to pancreatic hypoplasia characterized by a decrease in
acinar cell mass while the mesenchymal compartment increases
relative to total pancreatic mass. This is consistent with our
observation that the pancreatic mesenchyme is a direct target of
Wnt7b from the pancreatic epithelium. Though targeted deletion of
Wnt7b causes a reduction in pancreatic progenitor growth, we did
not detect an increased progenitor growth following overexpression
of Wnt7b in vivo. Given that the mesenchyme is a direct target of
Wnt7b, it is likely that Wnt7b overexpression transforms the
mesenchyme, which in turn has negative effect on the epithelium,
but this remains to be established. The decreased expression of Lef1
within the pancreatic epithelium of Wnt7b DTG may contribute to
the reduced epithelial mass. Our future studies are aimed at
culturing Wnt7b overexpressing epithelial cells in the absence of
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Fig. 9. Pancreatic epithelial specific Wnt7b controls the expression of the canonical Wnt target Lefl in both pancreatic epithelium and mesenchyme. (A-F) Wnt7b
overexpression leads to hyperactivation of Lef1 expression specifically within the pancreatic mesenchyme. Immunofluorescence staining of Pdx1 (A, D), Lefl (B, E) and
overlay of Pdx1, Lefl and Desmin (C, F) in E12.5 WT (A-C) and Wnt7b DTG pancreas (D-F). (G-L) Pancreatic epithelial deletion of Wnt7b leads to loss of Lef1 within the
pancreatic mesenchyme and reduced expression within the epithelial compartment. Immunofluorescence staining of Pdx1 (G, J), Lef1 (H,K) and overlay of Pdx, Lef1 and

Desmin (I, L) in E13.5 wild type pancreas (G-I) and Wnt7b PKO (J-L).

the mesenchyme to test to what extent exogenous Wnt7b promotes
epithelial growth. Indeed recent in vitro culture of pancreatic
epithelial progenitor cells indicates that the canonical Wnt agonist
R-spondin indeed promotes progenitor growth (Huch et al.,, 2013;
Jin et al,, 2013; Sugiyama et al., 2013). Another possibility for the
reduced pancreas in the Wnt7b overexpressing embryos could be
due to negative effects of hyperactivation of canonical Wnt signal-
ing beyond a given threshold as previously observed during
endoderm patterning in Xenopus embryos (Zhang et al., 2013).

Our findings underscore the importance of an optimal thresh-
old of canonical Wnt signaling for pancreatic progenitor growth
and morphogenesis, as hyperactivity of this pathway disrupts
morphogenesis and differentiation. Though we have identified
Wnt7b to operate through the canonical Wnt signaling pathway,
its effect on non-canonical Wnt signaling in the pancreas remains
to be determined. Canonical and non-canonical Wnt signaling
have previously been shown to be mutually antagonistic (Gerdes
et al., 2007). Indeed the polycystic duct-like complexes that result
from Wnt7b overexpression in the pancreas are consistent with
defective non-canonical Wnt signaling. Similar polycystic ductal
structures in the kidney have been associated with defective
planar cell polarity, a branch of non-canonical Wnt signaling
(Patel et al., 2008; Simons and Walz, 2006).

Wnt mediated epithelial-to-mesenchymal interaction in progenitor
growth

It is interesting to note that cell-intrinsic abrogation of Wnt
signaling either in the pancreatic epithelium or the pancreatic
mesenchyme independently leads to pancreatic hypoplasia. Dele-
tion of p-catenin exclusively in the pancreatic mesenchyme results
in a similar degree of reduction in pancreatic mass as is the case
for B-catenin deletion in the epithelium (Baumgartner et al., 2014;

Landsman et al., 2011). This suggests that active Wnt signaling is
required both in the epithelium and mesenchyme to support
pancreatic progenitor cell growth. Indeed the observations in this
study are consistent with the notion that Wnt7b signals in an
autocrine (within the epithelium) and paracrine manner (to the
mesenchyme) in the developing pancreas. The strong canonical
Wnt responsiveness of the pancreatic mesenchyme (based on
observed increased expression of Lefl) and the effect of Wnt7b
overexpression on the mass and gene expression of the pancreatic
mesenchyme suggests that epithelial-derived Wnt7b promote
epithelial-mesenchymal interaction by modulating the growth
and/or nature of the mesenchyme. Also, the similarity in pheno-
types between the Wnt7b overexpressing pancreas (shown in this
study) and the epithelial specific hyperactivation of p-catenin in
the early pancreas (Heiser et al., 2006) reflects an autocrine Wnt7b
signaling within the developing pancreatic epithelium. Further
studies will be required to allow for a comprehensive evaluation of
the functional role of Wnt7b in mediating epithelial-mesenchymal
interaction during pancreatic progenitor cell growth. Future ana-
lysis focused on purifying the pancreatic epithelial and mesench-
ymal cell layers in the Wnt7b DTG will allow for detailed
characterization of the effects of Wnt7b on both germ layers. Also
purification and analysis of the pancreatic mesenchyme in the
Wnt7b PKO would provide further insight into whether the
proliferative effects of Wnt7b are through autocrine signaling
within the epithelial layer, or via paracrine signaling through the
mesenchyme, or both. It will also be interesting to evaluate a
possible role of Wnt7b to recruit/promote the growth of particular
mesenchymal cells to the nascent pancreatic epithelium to aid
pancreatic progenitor growth.

Growth of the pancreatic epithelium has long been shown to
depend on trophic factors emanating from the adjacent mesench-
yme, most notable of which is Fgf10. Targeted deletion of Fgf10
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prior to the onset of pancreas development results in a severely
stunted pancreatic growth. Though Fgf10 expression begins to
diminish starting from E11.5 onwards, there is still an increased
pancreatic progenitor cell growth beyond this stage. Our observa-
tion that Wnt7b is required for progenitor growth starting at E11.5
suggests that Wnt7b possibly operates in relay to Fgf10 to promote
pancreatic progenitor growth. In such a model, Fgf10 from the
mesenchyme would support the growth of the primary transition
stage pancreas (~E8.5 to E12.5) following which epithelial-
derived Wnt7b becomes important for subsequent progenitor cell
growth. Further support for this notion can be derived from a
recent in vitro explant study by Greggio et al. in which Fgf
signaling was required for the early but not later stages of
in vitro culture of embryonic pancreatic organoids (Greggio et al.,
2013). Future studies based on the conditional deletion of Fgf10
during the secondary transition stages of pancreas development
would help test whether, and to what extent Fgf10 is required for
later stages of pancreatic progenitor cell growth in vivo.
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